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Periodically driven nonlinear systems can exhibit multiple-period behavior (period-2, period-3, etc.).
Several such systems, when driven with the same drive, can be on identical attractors but remain out of
phase with each other (e.g., one drive cycle for a period-doubled set of systems). This means that the
basins of attraction for multiple-period systems can be divided into domains of attraction, one for each
phase of the motion. A period-n attractor will have n domains of attraction in its basin. This out-of-
phase situation is stable—small perturbations will not succeed in getting the systems in phase. We show
that one can often use an almost periodic driving signal (generated from various chaotic systems) which
will simultaneously (1) keep the motion of the systems nearly the same as the periodic driving case, (2)
keep the basin of attraction nearly the same, and (3) eliminate the n domains of attraction. In other
words, there will be only one domain for the basin. This means that any number of such driven systems
will always be in phase. We display this effect in simulations and actual electrical circuits, discuss the
mechanism for this effect (which is most likely a crisis), and speculate on some applications of the tech-

OCTOBER 1993

nique.
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I. INTRODUCTION

Many nonlinear systems when driven with periodic sig-
nals have regimes of their parameters where they behave
periodically, but with a period that is some multiple of
the period of the driving signal [1-3]. This means that the
systems take n driving periods (where n is some integer)
to return to their starting points. For example, when
n =2, the systems will have a period of repetition that is
twice that of the driving signal. This latter case is often
referred to as a period-doubled system. Many other
period multiplicities are possible.

The driven system could be in several different phases
at a given point in the drive cycle. There are n possible
phases for a period-n behavior. Which phase the system
is at will depend on where it started when the drive signal
was turned on. The salient point is that if several identi-
cal nonlinear systems are being driven by a periodic sig-
nal (see Fig. 1) so that they are period multiplied they can
be permanently out of phase with each other. This out-
of-phase situation is stable.

period doubled
systems

FIG. 1. Schematic of several multiple-period systems being
driven by the same periodic drive. Depending on their initial
conditions, each response system may be in or out of phase with
any other.
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For example, Fig. 2 shows the period-2 attractor and
basin of attraction of a system (described below) which is
similar to the Duffing system [3]. It is a system in which
the x 3 Duffing term is approximated by a piecewise linear
function. We will simply refer to it as the piecewise
linear Duffing (PLD) system. A set of nearly identical
such systems with the same drive will be in or out of
phase by one drive cycle depending on which region
(domain) of phase space they started in. Figure 3 shows
out-of-phase signals from two PLD systems.

Furthermore, it is well known [4] that systems with

FIG. 2. Basin of attraction for the period-2 attractor PLD
system (see text) along with the attractor. The black areas all
synchronize with the point on the attractor in the black region.
The gray areas all synchronize with the point on the attractor in
the gray region.
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FIG. 3. Two out-of-phase signals [w,(#)] from two PLD sys-
tems started in different domains of Fig. 2.
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several final attractors can have fractal basin boundaries.
That is, the regions of phase space which mark where the
systems started and in what attractor they will end up are
complexly intertwined, in a fractal fashion. Here predic-
tion of the final system state can be very difficult, as
Yorke and co-workers [4] have pointed out, since the
fractal structure gives an uncertainty to determining the
domain of the initial conditions which is difficult to elimi-
nate. In our present case of multiple-period attractors,
this would mean that determining the final phase rela-
tions of the driven systems would become even more
difficult if the domains have fractal boundaries.

There are instances when out-of-phase behavior is un-
desirable. However, there may be simultaneous instances
when multiple-period behavior is required (perhaps be-
cause of the shape of the wave form needed) or unavoid-
able. We address the problem of maintaining a stable
system motion close to the original multiple-period
system’s while keeping all such systems in phase (syn-
chronized). Although this may seem like an artificial
problem we note that there may be several areas where
such criteria may appear. Examples are robotics, laser
arrays, frequency dividers, or physiology. In robotics, if
one is using nonlinear materials, devices that need to be
driven by a timing signal, then any parts that have
multiple-period behavior could get out of phase. In
lasers, if one is operating a set of lasers in a period-
doubled regime to get a half-frequency component, then
these should be in phase to maximize output intensity [5].
In physiology, many tissues and organs are nonlinear and
multiple behavior might be possible. In order to keep
such systems in synchronization with each other in many
driven circumstances we may find ourselves with the
above in-phase requirements.

We have shown [6,7] that multiple-period systems can
be driven to remain in nearly the same behavioral pat-
terns, but be stable and in phase. To do this we alter the
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periodic drive to one that is partly or even totally chaot-
ic. We call this new drive pseudoperiodic, since it stays
close to the original periodic drive for periods of time,
but it is never really periodic. Chaos is useful for creat-
ing such a drive because it has no periodicities. The suc-
cess of such a new drive would mean that in Fig. 2 we
would only have one domain of attraction (all black, for
example) since all initial conditions would lead to synch-
ronization (all in phase). In other words, what we have
really done is eliminate the multiple domains that accom-
pany period-n behavior. For systems which have fractal
basins of attraction, boundaries between multiple-period
domains will vanish and to some extent the prediction
problem of McDonald et al. [4] will be diminished or el-
iminated. :

Below in Sec. II we show approaches to building such
pseudoperiodic drives. There are several and which is
best will depend on the particular system. In some cases
using noise in place of chaos will also work. We com-
ment on the efficiency of each type of drive. In Sec. III
we demonstrate these principles in a circuit. The circuit
results lead to an explanation of why pseudoperiodic
driving works. This is explored further in Sec. IV using
numerical simulations where we make connections to
other bifurcations and crises. We conclude with several
remarks and speculations about the application of pseu-
doperiodic driving.

II. BUILDING A PSEUDOPERIODIC DRIVE

In this and the following sections we refer to the driv-
ing system as simply the drive and the driven system as
the response.

The basic idea is to build an alternative drive that is
not too different from the original periodic drive. There
are several approaches to this. Which is best to use will
depend on the response system. The three criteria to be
satisfied are (i) the response system must remain stable,
(ii) the pseudoperiodic drive must be similar to the origi-
nal periodic drive, and (iii) the present drive must elimi-
nate out-of-phase behavior (i.e., all response systems are
in synchronization). In the following sections we will
show examples of several types of pseudoperiodic drives
and their effects.

Some possible approaches to constructing a pseudo-
periodic drive follow.

(1) Direct replacement of the periodic drive with a
chaotic one which has pronounced spectral peaks at the
same frequency as the periodic drive. There are chaotic
systems which are oscillatory in nature, such as the
Rossler system [8]. This system is described by the equa-
tions

x=—yy+z),
y=y(lx+ay), (1)
z=y[b+z(x—c)].

In certain parameter regimes it is chaotic, but the chaos
has a strong periodic quality. The y parameter can be
tuned to have a spectral peak at the same frequency as
the original driving system. Figure 4 shows a Rdssler
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FIG. 4. Rossler vs sine wave.

x (t) time series compared to a cosine of the same fre-
quency. Figure 5 shows the Fourier spectra of both sig-
nals demonstrating the similarity of the Réssler to the
sinusoid. Furthermore, periodically driven systems
which are chaotic often have spectral features similar to
their drives and are also candidates for use as replace-
ment pseudoperiodic drives. For example, certain cases
of cosine-driven, mildly chaotic Duffing systems show
time series with spectral similarities to their drive. As we
show below, it appears that direct replacement of a
periodic drive by its chaotic counterpart, if possible,
often leads to the most robust pseudoperiodic drive when
compared to the following methods.

(2) Partial replacement of the periodic drive by adding
in some small amount of chaotic signal. This would be
described by a linear combination drive, 7S iodic
+5S haotic-: ' We have often used »=1.0 and s =¢, but one
can also take a homotopic approach and vary the signal
from pure periodic (r =1.0,5s =0.0), to some middle case
(r=a,s=1—a,lal <1.0), to pure chaotic
(r=0.0,5s =1.0), depending on the stability and quality of
the response time series. Sources of chaotic signals can
be systems from (1) above, or more broadband chaotic
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FIG. 5. Spectra of Rdssler vs sine wave from 4096-point fast
Fourier transforms of each signal.
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systems.

(3) Partial replacement of the periodic drive by adding
in some small amount of noise signal. This would be de-
scribed by a linear combination drive, 7S riogic TS noises
as in (2). In general, we find noise to not be as efficient as
chaos, but this will surely depend on one’s response.

(4) Modulation of a periodic drive by a chaotic or noise
sources. This would be described by a multiplication
drive, (7 +S haotic )S periodics Where 7 is a constant (possibly
zero). Whether the chaotic signal used is zero mean or
not will depend on the response system.

(5) Chaotic parametric modulation of the response sys-
tem [for example, the parameter k in Eq. (7)]. In cases
where the parameter modulated is not added to the drive
or multiplying the drive, this is different from cases (2)
and (4). One could vary the parameter slightly by adding
some chaos to the parameter, viz., kK +e€x (t), where x (¢)
is from a chaotic system. This will sometimes work with
noise modulation, too.

(6) Quasiperiodic driving. This is a case considered by
Heagy and Ditto [9] and Heagy and Hammel [10] in a
slightly different context. As we show below the mecha-
nism for the bifurcations seen in these papers is related to
the behavior described here. A general problem with us-
ing quasiperiodic driving is that, experimentally, it is
difficult to keep the drive quasiperiodic. Slight variations
in frequency of the drive may transform it from quasi-
periodic to periodic (albeit one with, perhaps, a high
period). This leads to the possibility of having multiple-
period behavior again, which was to be avoided.

We now demonstrate how to implement some of these
ideas in nonlinear circuits.

III. CIRCUIT DEMONSTRATIONS

To test multiple domain elimination using pseudo-
periodic driving on a real system, we built several closely
matched nonautonomous nonlinear circuits.. We discuss
the relevant typical examples here.

A. The response circuit

For the response circuits we considered a circuit simi-
lar to a Duffing system with a piecewise linear circuit ele-
ment emulating the cubic term, the PLD system. The
equations describing these circuits are

%=a[A cos(wt)+C—0.2y —G(x)], 2
dx _
=y (3)

0 [abs(x)<1.2]
G(x)=1x—1.2sgn(x) [1.2=<abs(x)<2.6] 4)
2x —3.8sgn(x) [2.6=<abs(x)],

where A is the amplitude of the cosine drive and C is a
constant offset that may be added to the drive. The time
factor a is 1X10* s~1. We use the function G (x) instead
of x3 because it is easier to closely match two response
circuits using a piecewise linear function. The function
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x? requires the use of analog electronic multiplier chips,
whose characteristics vary from chip to chip. Figure 6 is
a schematic of the PLD circuit. Figure 7 is a schematic
of the piecewise linear circuit which executes the function
G (x). The piecewise linear circuit used many 20 turn
trimpots so that two of these circuits could be closely
matched. We also used trimpots in series with resistors
R6 and R9 in Fig. 6 to match the two PLD circuits.

B. Sources for pseudoperiodic drive signals
in the experiments

As a chaos source we used an unstable oscillator with a
hysteritic element [11,12]. The equations modeling this
circuit are

dx, 3
——=10°(1.5x,+2.2x;+2.2x,) ,

dt

dx,
= =10y,

dx; )
ETZ(I—X3)(SXI_D+X3)—"83X3 N

where €=0.3, S=1.667, D =0.0, and 8;=0.001. The x;
equation is a phenomenological equation used to model
the hysteresis. An extra damping term may be needed in
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FIG. 6. Duffing equation circuit used to test period-doubling
synchronization through pseudoperiodic driving. R1=R3
=R4=R5=R6=10 kQ, R2=39.2 kQ, R7=R10=100 kQ,
R8=R9=1 MQ, C1=C2=0.001 uF. All operational
amplifiers are type 741. The square marked DFG is a diode
function generator that provides a piecewise linear approxima-
tion to the x> term in the Duffing equations.
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FIG. 7. Diode function generator circuit to approximate x>
term in Duffing circuit. R1=R2=R3=R4=R9=100 kQ.
R5=R7=680 k. R6=R8=2 MQ. P1=P3=20 kQ poten-
tiometer. P2=P4=50 kQ potentiometer. P5=P6=P5=
P8=20 kQ potentiometer in parallel with 100-Q resistor. The
diodes are all type 1N485B. The potentiometers are used to
match different x? circuits to each other. The amplifier is type
741.

the x, equation to simulate the effect of losses in the cir-
cuit.

We also used a General Radio 1390-B noise generator
to provide white noise with a spectrum that was flat to 20
kHz, and a Hewlett Packard function generator to gen-
erate a sine wave with a frequency of about 400 Hz.

C. Results for various combinations
of drive and response circuits

We studied the synchronization of two period-doubled
PLD circuits described above. We first ran these circuits
with a drive amplitude of 4 =5.19 V and an offset of
C=0.3 V. We added chaos from the hysteretic oscillator
circuit or noise from the white noise generator to the
drive signal.

For both types of drive we found a fairly sharp thresh-
old for synchronization when the multiplier € of the sig-
nal added to the drive was 0.08. Above this threshold,
the two circuits were synchronized 90% of the time. The
threshold was sharper than for the sub-Rdéssler circuits
used in our previous work [6] because the PLD circuits
were easier to match. This threshold varied as the drive
amplitude varied, becoming smaller near points where bi-
furcations in the PLD circuit response occurred. We saw
similar results when we used a periodic signal with a fre-
quency incommensurate with the drive signal.

Figure 8(a) shows a period-doubled attractor for the
PLD circuit driven with a sine wave, while Fig. 8(b)
shows the same circuit with just enough chaos added to
the sinusoidal drive to synchronize two systems.

We observed that one or the other (or both) of the cir-
cuits pass through an unstable period-1 orbit just before
they synchronize. When the two circuits are initially out
of phase, they may travel around the period-1 orbit a
different number of times. If one circuit makes an even
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(a)

FIG. 8. Period-doubled attractors (x vs y) for Duffing circuit
with periodic or pseudoperiodic driving. (a) is for a Duffing cir-
cuit driven periodically, while in (b) just enough chaos has been
added to the periodic drive to keep two period-doubled circuits
synchronized.

number of period-1 orbits before returning to the period-
2 and one makes an odd number, the two circuits will be
synchronized. If the two circuits are already synchron-
ized, they will both make the same number of period-1
orbits, and will stay in synchronization. Figure 9 shows
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FIG. 9. Time series for signals corresponding to the x vari-
ables in two nearly identical piecewise linear Duffing circuits
driven with a pseudoperiodic signal. Both time series are ini-
tially period doubled but out of phase by one drive cycle. The
x, signal then goes through three unstable period-1 cycles start-
ing at about £ =0.006 s, causing its phase to flip.
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the x signal from each of two circuits. The two signals
are initially out of phase. The signal on top then goes
through three period-1 orbits, so that when it returns to
the period 2, it is in phase with the signal on the bottom.

We then varied the amplitude of the drive signal for
the period-doubled PLD system and observed how this
changed the threshold for synchronization. Figure 10
shows the results of this investigation when chaos from
the hysteretic oscillator circuit or white noise was added
to the sinusoidal drive signal. In this figure, the value of
the multiplier € has been normalized so that the largest
value is 1.

The sinusoidally driven PLD system undergoes a bifur-
cation from period 1 to period 2 at a drive amplitude of
4.15 V. In Fig. 10, the multiplier € is smallest for drive
amplitudes just above the period-doubling value, and in-
creases as the drive amplitude is increased. The thresh-
old value of € reaches a peak whose location depends on
the type of driving used. The threshold € decreases as the
drive amplitude increases above this point, becoming
very small at 7.2 V drive. At 7.25 V, the sinusoidally
driven PLD circuit becomes chaotic.

To demonstrate the effect of having nonidentical sys-
tems, we varied one resistor in one of the period-doubled
PLD circuits and measured the fraction of time that the
two systems were synchronized as a function of € when
the drive amplitude was 5.19 V. Figure 11 plots this rela-
tion when the resistor R4 was replaced with a 9-k{} resis-
tor (10% parameter difference) and a 7.5-k{) resistor
(25% parameter difference). When the two circuits were
matched as closely as possible, the parameter difference is
still approximately 1%.

In Fig. 11 the circuits with 1% parameter difference
and 10% difference synchronize in approximately the
same fashion, although just above the threshold for
synchronization the 1% difference circuits are in synch-
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FIG. 10. Comparison of the threshold for synchronization of
pseudoperiodically driven period-doubled piecewise linear
Duffing circuits. The amplitude of the periodic part of the drive
is A. For the open circles, the pseudoperiodic drive was made
by adding chaos to the periodic drive, while for the dark
squares, white noise was added. To correct for different initial
amplitudes of the noise or chaos, €,; is the value of € normal-
ized so that the largest value was 1.
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FIG. 11. Comparison of synchronization threshold for pseu-
doperiodically driven piecewise linear Duffing circuits when
resistor R4 in one circuit was changed to create a parameter
difference. The fraction of time the circuits are synchronized is
fs. The open circles represent a parameter difference of 1%, the
dark squares represent a difference of 10%, and the open trian-
gles represent a difference of 25%.

ronization a greater fraction of the time than the 10%
circuits. The synchronization threshold appears to be
lower for the 25% parameter difference circuits. This is
probably because such a large parameter change coin-
cidently reduces the synchronization threshold in the cir-
cuit with the modified resistor. The fraction of the time
that the 25% circuits are synchronized does not rise as
quickly above the threshold as it does for the 1% and
10% circuits. When the 1% and 10% circuits are in
synchronization 90% of the time, the 25% circuit is in
synchronization only 70% of the time.

For well-matched circuits, if the two circuits are in
phase, then when one goes through a period-1 orbit and
changes its phase, the other will most likely do the same.
When the circuits are not well matched, there is a much
larger chance that when started in phase, one will change
phase while the other does not. This is because parame-
ter differences result in degradation of synchronization of
any two similar, stable systems [11].

IV. ANALYSIS
OF A PSEUDOPERIODICALLY DRIVEN SYSTEM

A. Prelude

In Ref. [6] we give a heuristic argument as to why one
might expect that adding a chaotic signal to a periodic
drive might eventually lead to the destruction of multiple
periodic behavior. This argument shows that if we
change the drive of a system slightly, we expect the sys-
tem at first to have behavior close to its original behavior.
But as we increase the chaos in the drive (i.e., change the
drive more) we should reach a point at which the
response is no longer near its original trajectory and the
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behavior is qualitatively different. Thus we would predict
a threshold above which multiple-period trajectory is no
longer stable. This threshold should be seen when we use
techniques like (2) in Sec. IT and was seen (above) in cir-
cuit implementations of pseudoperiodic technique (2).
Whether the new motion is stable and still similar to the
original is another matter which we take up below.

Mathematically we can understand the threshold argu-
ment as follows. If the original system is given by

w=f(w,v), (5)

where v is the driving signal and the behavior is multiple
period (nonchaotic), then changing v to another drive sig-
nal v’ will lead to the variational equation

Aw'=D,f(w',v)+B (1), (6)

where Aw=w’'—w, B(t)=f(w,v")— f(w,v), and D, f is
the Jacobian of the vector field. If v’ is in some sense
close to v, then B (¢) will be small (in some norm) and, us-
ing the transfer function [6], we can show that Aw
remains small. This follows from the smallness of B (z)
and the stability of the original system (as realized
through D, f). However, as v’ is changed to be greatly
different from v, B (¢) will no longer remain small and we
expect some level of v’ at which the new motion no
longer remains near the original motion step by step in
time.

The surprise is that if v’ is still not too different from v,
the new motion will be on an attractor very similar to the
original and it can be stable. However, the multiple
periodicity is lost and only one domain remains. This
loss of domains comes about apparently by a type of bi-
furcation called a crisis. We explain this below after in-
troducing a model to display the behavior and help us an-
alyze the threshold and multiple domain destruction.

B. Numerical simulation

We chose a model of the above PLD system as the
response. The equations of motion are similar to Egs.
(8)-(10):

dw,
::w2 ,
t
d (7)
dw, ;
ar =—kw,twi;tav+p,

where v is the drive, either sinusoidal [cos(w?)] or pseu-
doperiodic. The cubic term w? was approximated by the
piecewise linear function G (x) in Eq. (4). We set kK =0.2,
a=4.19, =0.3, and ©#=0.42223, all of which match
the parameters of the circuit. A small amount of smooth-
ing using local convolution was done in a region about
the kinks in G (x) corresponding to a size of Ax =~0.08.
The motion in this regime is period 2. The period-2 at-
tractor bifurcates from the period 1 by a flip saddle bifur-
cation [13]. Figure 2 shows the attractor for this system
and the domains of attraction for each phase of the
period-2 motion. Figure 12 shows a detailed view of the
period-2 attractor along with the unstable period-1 and
simultaneous system points. This will be used for com-
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FIG. 12. Positions of out-of-phase period-2 points (A4’ and
A'"") relative to unstable period-1 (flip saddle points A4).

parison with the pseudoperiodic driven cases below and
in their analysis. The system actually has many of the
same attractors as the original PLD system (see the at-
tractors in Ref. [13]) in several parameter regimes.

For our chaos drives we tested two sources. One was
the Rossler system Eq. (1) with a =b =0.2, ¢ =4.5, and
v =0.12, the latter being set to provide a strong spectral
peak at the same frequency as cos(wt). This was used to
completely replace the cos(wt) drive as described in part
(1) of Sec. II. Another chaos source was the Lorenz sys-
tem [3]

x=yo(y—x),
y=y(—xz+rx—y), (8)
z=y(xy —bz),

where y=0.04, 0=10.0, b=3%, and r=60.0. The
Lorenz chaos was broadband and was used with the tech-
nique described in part (2) of Sec. II, addition of chaos to
the cos(wt) drive.

In order to gauge time for transient behavior in terms
of the typical system times we will refer to times in num-
ber of cosine periods. We will simply term these cycles as
follows.

1. Rossler pseudoperiodic driving. Replacement of the drive

We replaced the cos(wt) with x(z) from the Rossler
drive. We scaled x (¢) so that it had a rms value equal to
the cosine value of 1/v2. We first chose the starting
point for the Réssler so that x (¢) had its first zero cross-
ing at the same time as the cosine. This was to mimic the
cosine as much as possible, at least at first before Rossler
and cosine would get out of phase (see Fig. 4). This
turned out to be unnecessary as any starting phase of the
Rossler worked as well as any other. The Rossler-driven
PLD system turned out to be stable (negative conditional
Lyapunov exponents [14]), so that one of our three cri-
teria was fulfilled: stability.

We ran two PLD systems along with the Rossler.
They were started one cosine drive cycle out of phase on
the period-2 attractor. Typically, the Rossler drive
caused one of the PLD systems to jump to a trajectory
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near the other in one or two cycles. Both PLD systems
would then converge to within numerical integration ac-
curacy (typically 10~ * times the attractor size) within five
to seven cycles. Because of the stability they would stay
converged. Along with calculating the Lyapunov ex-
ponents we tested stability by occasionally perturbing one
of the responses and letting the integration run for long
times (thousands of cycles). All tests showed stability of
the convergence of both responses, so that another of our
criteria is satisfied: in-phase or synchronized behavior.
This means the basin of attraction now has only one
domain so Fig. 2 would be all one “color.”

Figure 13 shows the trajectories of the responses at the
start of a typical run using R&ssler driving (both PLD’s
started one cosine drive cycle apart). Note that after
roughly one cycle both responses are on the same side of
the unstable period-1 orbit and beginning to converge.
We analyze this more in Sec. IV C.

Figure 14 shows the w,(z) signal from the PLD
response. Note the similarity to the periodically driven
period-2 system 2 case in Fig. 3. Some differences show
up in exact heights of peaks and a few small details, but
the basic shapes and behavior are retained. Figure 15
shows the attractor for the pseudoperiodically driven
case and should be compared to Fig. 2. Although the
pseudoperiodic case is “noisier” it shows that the
behavior is close to the general behavior of the period-2
case, so that the remaining criterion for pseudoperiodic
driving is satisfied: similarity to the original periodically
driven case.

2. Lorenz pseudoperiodic driving. Addition to drive

We added chaos from the Lorenz system to create a
pseudoperiodic drive according to v (¢)=cos(wt)+ex (1),
where x (1) is the x component of the Lorenz system. By
varying € we can display the threshold phenomena and
the effects of varying the amount of chaos in the drive.

We found that for this configuration of systems we
needed €>¢€,=0.0076. If we rescale the rms value of
x (¢) so that it is 1V'2 we find that the threshold occurs at

Réssler Driven Duffings
(one cycle)

S
P o

FIG. 13. Convergence of originally out-of-phase points (see
Fig. 12) after crossing unstable period 1 when using a Rdssler
pseudoperiodic drive.
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FIG. 14. Time series w,(¢) for pseudoperiod-2 PLD (com-
pare to Fig. 3).

~6% (rms) chaos. Figure 16 shows the number of cycles
to convergence of both PLD responses, where conver-
gence is measured by integration accuracy as in the
Rossler case. Below threshold no convergence took place
in tests lasting for up to 20000 cycles. Figure 17(a)
shows the attractor of one of the PLD systems when
€=0.007 (~5.5% chaos, just below the threshold). Just
above threshold the average number of cycles to synch-
ronization begins at very high values and decreases rapid-
ly, initially for € increasing away from ¢€,. The average
number of cycles to synchronization then levels off.

The behavior above threshold is shown in Figs. 17(b)
and 17(c). In Fig. 17(b) the € value chosen will guarantee
synchronization in about 20 cycles on average. At this €
value it takes on average 11 cycles for one of the
responses to cross over the unstable period 1 and begin to
converge to the other. This convergence is shown in Fig.
18 and is similar to the Rossler case except that it takes
on average a few more cycles. This gives a somewhat
“cleaner” attractor compared with the Rossler case, but
in real applications where parameter differences will
cause occasional out-of-synchronization behavior more
rapid convergence to synchronization than this may be
necessary. In order to match the rapidity of synchroniza-
tion of the Rossler-driven case a value of € >0.05 must be
used. This does cause rapid convergence, but as can be
seen in Fig. 17(c) the topology of the attractor is greatly
degraded.

Which type of pseudoperiodic drive one uses is depen-
dent on the requirements and on the response. Some sys-
tems will not be stable to complete replacement of the

FIG. 15. PLD pseudoperiod-2 attractor.
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FIG. 16. Number of cycles to convergence of out-of-phase
points (see Fig. 12) as a function of added Lorenz chaos in the
pseudoperiodic drive for the PLD response. The threshold cor-
responding to a crisis is evident. The scaling function fit to the
numerical data is 1/(e—¢,)".

(a) €=0.007

FIG. 17. PLD pseudoperiod-2 attractors (Lorenz-added-to-
cosine pseudoperiodic drive), (a) €=0.007, (b) €=0.01, (c)
€=0.05.
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Lorenz+cosine driven Duffing:
(after 10 cycles)

FIG. 18. Convergence of originally out-of-phase points (see
Fig. 12) after crossing unstable period 1 when using a Lorenz-
added-to-cosine pseudoperiodic drive.

periodic drive by a chaotic one like the Rossler [6]. What
is interesting is that when the complete replacement tech-
nique works, it appears to be more robust than the addi-
tive method in the numerical modeling, but not necessari-
ly in the experiment. The reasons for these differences
are not yet understood.

C. Analysis of the threshold: A crisis

The threshold phenomenon is related to a crisis. In or-
der to see this we examine the Poincaré map by strobing
the system at times ¢t=2mwn/w (n=0,1,2,...), which
causes the generation of a map of the points labeled 4 in
Fig. 12. These starting points are shown in a closeup of
this region of the Poincaré section in Fig. 19(a). The A4
point on the unstable period 1 is a saddle-node fixed
point. The tangents to the stable and unstable manifolds
are also shown in Fig. 19. The latter we calculated by
finding the eigendirections of the Lyapunov exponents
[14] for the saddle-node point.

If the driving were periodic, the points on the period-2
orbit (A’ and A" in Fig. 19) would merely alternate to
opposite sides of the unstable direction. However, be-
cause of the added chaos the pseudoperiod-2 points map
to points perturbed from their period-2 locations. When
enough chaos is added so that the pseudoperiodic drive is
above the threshold for synchronization, one of the
points is finally perturbed over the stable manifold associ-
ated with the unstable period-1 point. This is shown in
Fig. 19(b). From this point on, because of the relative lo-
cation of the pseudoperiod-2 points to the stable and un-
stable manifolds the two responses will converge to the
same attractor.

There is some chance that one of the pseudoperiod-2
points would be knocked back over to the other side of
the unstable manifold, but this is small. Furthermore, as
the two pseudoperiod-2 trajectories converge, if one is
knocked over, the other is more and more likely to follow
since they are both driven with the same pseudoperiodic
signal. In the case of perfect convergence (both responses
reach the exact same trajectory) the two responses never
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#— unstable period-1 orbit

(b) after 10 cycles

FIG. 19. Poincaré maps of out-of-phase points before (cycle
1) and just after the crisis point (cycle 11), showing the crossing
of the stable manifold of the unstable period-1 point.

again get out of synchronization or phase. This is seen in
the numerical studies. In real systems the two responses
will never have the same parameter values and so will
never converge to the same trajectory [14]. In this latter
case one of the responses will occasionally get knocked
out of phase with the other. Some time later they will be
knocked in phase again. If the parameter differences are
not too large the systems will still be in phase a large per-
centage of the time, e.g., ~90% for the circuits we stud-
ied.

This threshold behavior is similar in scenario to a
phenomenon called a crisis [10,15]. In a crisis a dynami-
cal system is operating below the threshold for a bifurca-
tion (we are using the word bifurcation in the most gen-
eral sense here as a topological change to the attractor).
As the salient parameter for the bifurcation is moved
closer to the threshold it is possible for the system to
display behavior similar to that found above the thresh-
old, but only for finite times. In some cases the above-
threshold behavior recurs at random intervals (e.g., inter-
mittency [16]). In others the above-threshold behavior
only occurs during a transient (e.g., chaotic transients
[17]) after which the below-threshold behavior persists.

The average time 7 for the transients asymptotes to
infinity as the system parameter (€ here) approaches the
threshold [9,10,15,17-19]. Grebogi et al. have shown
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that these times should fit a scaling law of the form

K
~— 9
T (e—c.) 9

In Fig. 18 we show a fit to the convergence time for a law
of this form. We find €,=0.0074 and v=0.9596. In
many of the simulations we find the scaling exponent to
be close to 1.0. The fit suggests that we can view the
pseudoperiodic threshold as a crisis with the amount of
chaos in the drive € being the bifurcation parameter.
This is the view taken in [8,10]. There Heagy and co-
workers add another periodic drive to a Duffing system
[9] and a logistic map [10]. They suggest that this is a
new type of bifurcation.

Another view of this phenomenon is that of a noise-
induced crisis after the work by Sommerer et al. [18] and
the theoretical work by Arecchi, Badii, and Politi [20].
In this view a system parameter is maintained at a value
just before a crisis and the system is driven with noise.
The noise will knock the system into a postcrisis state al-
lowing it to behave similarly to the postcrisis orbit for
some time 7 before it falls back to its precrisis state. The
theory states that the scaling behavior for 7 for this type
of phenomenon is

T~ "g(la—a,l/e), (10)

where € is the noise level, g is a function specific to the
particular system, and « is the bifurcation parameter. In
our case the noise comes from adding the chaos to make
the pseudoperiodic drive and the bifurcation parameter
can be any parameter which takes the system from
period-1 to period-2 behavior. We chose a to be the am-
plitude of the cos(wt) drive.

In order to test the second view we numerically studied
the pseudoperiodically driven PLD for ¢=4.19 and 2.5.
The period-2 bifurcation comes at a,~2.04. Figure 20
shows a plot of the average time to synchronization (tran-
sient time) for two period-doubled PLD systems. The
axes have been scaled as in [18] to display the adherence
of the system behavior to Eq. (10). As the figure shows,
there appears to be scaling according to a noise-induced
crisis model.

At this point we would conclude that the nature of the
pseudoperiodic crisis has elements both like that ob-
served in the quasiperiodic case by Heagy et al. and also

m a=25 e
® o =419

T
40 60 80 100 120

la—ol/e

FIG. 20. Average scaled time to synchronization for noise
driven scaling for two period-doubled PLD systems (cf. [18]).
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like that observed by Sommerer et al. depending on
which parameter one chooses as the bifurcation parame-
ter (noise level € or system parameter a). This would im-
ply an underlying connection between these crises,
perhaps treatable as a codimension-2 bifurcation. Our
study of chaotically varying the logistic map [21] parame-
ter shows that bifurcations very similar to those Heagy
saw also come about in pseudoperiodically driven maps.

However, we note that the above analysis may not ap-
ply to all pseudoperiod drives. In the case of chaos added
to a periodic drive [method (2) of Sec. II] we retain an un-
derlying drive component whose phase is constant with
respect to the original drive [cos(w?)]. But in the use of
complete replacement of the drive by a chaotic one with
strong spectral components similar to the original drive
[method (1) of Sec. II] there is no constant phase or true
underlying periodic signal, although if there is only weak
chaos, then the drive “phase” does not wander much
from the periodic phase and there may actually be some
average phase that can be used for reference. But gen-
erally, we cannot just treat this as a case of “noise’” on
top of a periodic drive. The drive is fundamentally and
topologically different. It is not clear how to analyze this
latter case in relation to the phenomena of a crisis, but it
is clear that this is fundamentally a new type of driving
technique that nonetheless often retains some of the
periodic driving behavior. Its analysis remains to be
done.

V. CONCLUSIONS AND REMARKS

There are several approaches to pseudoperiodic driv-
ing, as outlined in Sec. II. We have investigated only a
few with the most attention paid to addition of chaos to
an existing periodic drive. Some of the theory of crises
can account for the synchronization in this case, but the
case of replacement of the periodic drive by a chaotic one
remains a problem for analysis. We contend here as we
have elsewhere [14] that new mathematical tools are
probably necessary to analyze chaotically driven systems.
These are topologically different drives from the periodic
ones. However, as in the Rossler drive case some of the
structure of the periodic drive occasionally remains. This
may be a hint as to how to begin the analysis of pseudo-
periodic driving using method (1).

We note that a few others have studied systems with
drives modified similar to ours, but they focused on other
issues. Among these are Kapitaniak [22], who studied
systems with noise, especially driven with noisy drives;
also Kornadt, Linz, and Liicke [23], who studied a map
similar to the logistic map and added noise to the param-
eter which is quite similar to pseudoperiodic driving.

The phenomena uncovered here and the potential ap-
plications do provide interesting possibilities. There are
several striking features of pseudoperiodic driving above
threshold. One is robustness. The stable region spans at
least an order of magnitude in € for certain drives and is
not sensitive to changes in the driving system, provided
the drive remains chaotic. Another feature is that pseu-
doperiodic driving results in smooth response behavior
which closely mimics (forever) the response behavior with
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a periodic drive. Finally, we often need add only a few
percent of the chaotic signal to a periodic signal to elimi-
nate multiple-period behavior.

Applications of pseudoperiodic driving can be con-
sidered in a general scenerio by noting that if one wants
to drive a complex nonlinear system so that all subsys-
tems are, in some way, stably synchronized, then the
driving signal of choice would not be a periodic one, but
rather a pseudoperiodic one.

A particular application of this might be in physiology.
For some time researchers have noted the probable ex-
istence of chaotic signals in living organisms [24—-26] and
the possible association of pathology with periodic
behavior. This latter suggestion is plausible since synch-
ronization is important in many physiological functions
(e.g., heart valves opening and closing in the right order).
Pseudoperiodic driving offers an alternative, concrete ex-
planation for physiological chaos: organisms use chaos to
avoid multiple-period behavior. In this sense it might be
best to use pseudoperiodic drives in implants which re-
quire nearly periodic stimulation of muscles or nerves.

For example, pacemakers may be good candidates for
pseudoperiodic drives.

Systems of coupled oscillations may also be good can-
didates for pseudoperiodic driving. Many times devices
are coupled into arrays to increase the sensitivity or
power output beyond what one device would provide. In
many of these cases it is desirable that the devices run
synchronously. An example of this is the Josephson-
junction superconducting device arrays which have been
suggested as voltage standards, oscillators, and detectors.
Should the devices be nonlinear (as the Josephson-
junction devices are) one runs the risk of an unsynchron-
ized system (which is known to happen with the
Josephson-junction devices). Pseudoperiodic driving may
be advantageous in this situation.
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FIG. 2. Basin of attraction for the period-2 attractor PLD
system (see text) along with the attractor. The black areas all
synchronize with the point on the attractor in the black region.
The gray areas all synchronize with the point on the attractor in
the gray region.



